ok
Direktori : /home2/selectio/www/3-idiots/vendor/phpseclib/phpseclib/phpseclib/Math/BinaryField/ |
Current File : /home2/selectio/www/3-idiots/vendor/phpseclib/phpseclib/phpseclib/Math/BinaryField/Integer.php |
<?php /** * Binary Finite Fields * * In a binary finite field numbers are actually polynomial equations. If you * represent the number as a sequence of bits you get a sequence of 1's or 0's. * These 1's or 0's represent the coefficients of the x**n, where n is the * location of the given bit. When you add numbers over a binary finite field * the result should have a coefficient of 1 or 0 as well. Hence addition * and subtraction become the same operation as XOR. * eg. 1 + 1 + 1 == 3 % 2 == 1 or 0 - 1 == -1 % 2 == 1 * * PHP version 5 and 7 * * @author Jim Wigginton <terrafrost@php.net> * @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License */ namespace phpseclib3\Math\BinaryField; use phpseclib3\Common\Functions\Strings; use phpseclib3\Math\BigInteger; use phpseclib3\Math\BinaryField; use phpseclib3\Math\Common\FiniteField\Integer as Base; /** * Binary Finite Fields * * @author Jim Wigginton <terrafrost@php.net> */ class Integer extends Base { /** * Holds the BinaryField's value * * @var string */ protected $value; /** * Keeps track of current instance * * @var int */ protected $instanceID; /** * Holds the PrimeField's modulo * * @var array<int, string> */ protected static $modulo; /** * Holds a pre-generated function to perform modulo reductions * * @var callable[] */ protected static $reduce; /** * Default constructor */ public function __construct($instanceID, $num = '') { $this->instanceID = $instanceID; if (!strlen($num)) { $this->value = ''; } else { $reduce = static::$reduce[$instanceID]; $this->value = $reduce($num); } } /** * Set the modulo for a given instance * @param int $instanceID * @param string $modulo */ public static function setModulo($instanceID, $modulo) { static::$modulo[$instanceID] = $modulo; } /** * Set the modulo for a given instance */ public static function setRecurringModuloFunction($instanceID, callable $function) { static::$reduce[$instanceID] = $function; } /** * Tests a parameter to see if it's of the right instance * * Throws an exception if the incorrect class is being utilized */ private static function checkInstance(self $x, self $y) { if ($x->instanceID != $y->instanceID) { throw new \UnexpectedValueException('The instances of the two BinaryField\Integer objects do not match'); } } /** * Tests the equality of two numbers. * * @return bool */ public function equals(self $x) { static::checkInstance($this, $x); return $this->value == $x->value; } /** * Compares two numbers. * * @return int */ public function compare(self $x) { static::checkInstance($this, $x); $a = $this->value; $b = $x->value; $length = max(strlen($a), strlen($b)); $a = str_pad($a, $length, "\0", STR_PAD_LEFT); $b = str_pad($b, $length, "\0", STR_PAD_LEFT); return strcmp($a, $b); } /** * Returns the degree of the polynomial * * @param string $x * @return int */ private static function deg($x) { $x = ltrim($x, "\0"); $xbit = decbin(ord($x[0])); $xlen = $xbit == '0' ? 0 : strlen($xbit); $len = strlen($x); if (!$len) { return -1; } return 8 * strlen($x) - 9 + $xlen; } /** * Perform polynomial division * * @return string[] * @link https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Euclidean_division */ private static function polynomialDivide($x, $y) { // in wikipedia's description of the algorithm, lc() is the leading coefficient. over a binary field that's // always going to be 1. $q = chr(0); $d = static::deg($y); $r = $x; while (($degr = static::deg($r)) >= $d) { $s = '1' . str_repeat('0', $degr - $d); $s = BinaryField::base2ToBase256($s); $length = max(strlen($s), strlen($q)); $q = !isset($q) ? $s : str_pad($q, $length, "\0", STR_PAD_LEFT) ^ str_pad($s, $length, "\0", STR_PAD_LEFT); $s = static::polynomialMultiply($s, $y); $length = max(strlen($r), strlen($s)); $r = str_pad($r, $length, "\0", STR_PAD_LEFT) ^ str_pad($s, $length, "\0", STR_PAD_LEFT); } return [ltrim($q, "\0"), ltrim($r, "\0")]; } /** * Perform polynomial multiplation in the traditional way * * @return string * @link https://en.wikipedia.org/wiki/Finite_field_arithmetic#Multiplication */ private static function regularPolynomialMultiply($x, $y) { $precomputed = [ltrim($x, "\0")]; $x = strrev(BinaryField::base256ToBase2($x)); $y = strrev(BinaryField::base256ToBase2($y)); if (strlen($x) == strlen($y)) { $length = strlen($x); } else { $length = max(strlen($x), strlen($y)); $x = str_pad($x, $length, '0'); $y = str_pad($y, $length, '0'); } $result = str_repeat('0', 2 * $length - 1); $result = BinaryField::base2ToBase256($result); $size = strlen($result); $x = strrev($x); // precompute left shift 1 through 7 for ($i = 1; $i < 8; $i++) { $precomputed[$i] = BinaryField::base2ToBase256($x . str_repeat('0', $i)); } for ($i = 0; $i < strlen($y); $i++) { if ($y[$i] == '1') { $temp = $precomputed[$i & 7] . str_repeat("\0", $i >> 3); $result ^= str_pad($temp, $size, "\0", STR_PAD_LEFT); } } return $result; } /** * Perform polynomial multiplation * * Uses karatsuba multiplication to reduce x-bit multiplications to a series of 32-bit multiplications * * @return string * @link https://en.wikipedia.org/wiki/Karatsuba_algorithm */ private static function polynomialMultiply($x, $y) { if (strlen($x) == strlen($y)) { $length = strlen($x); } else { $length = max(strlen($x), strlen($y)); $x = str_pad($x, $length, "\0", STR_PAD_LEFT); $y = str_pad($y, $length, "\0", STR_PAD_LEFT); } switch (true) { case PHP_INT_SIZE == 8 && $length <= 4: return $length != 4 ? self::subMultiply(str_pad($x, 4, "\0", STR_PAD_LEFT), str_pad($y, 4, "\0", STR_PAD_LEFT)) : self::subMultiply($x, $y); case PHP_INT_SIZE == 4 || $length > 32: return self::regularPolynomialMultiply($x, $y); } $m = $length >> 1; $x1 = substr($x, 0, -$m); $x0 = substr($x, -$m); $y1 = substr($y, 0, -$m); $y0 = substr($y, -$m); $z2 = self::polynomialMultiply($x1, $y1); $z0 = self::polynomialMultiply($x0, $y0); $z1 = self::polynomialMultiply( self::subAdd2($x1, $x0), self::subAdd2($y1, $y0) ); $z1 = self::subAdd3($z1, $z2, $z0); $xy = self::subAdd3( $z2 . str_repeat("\0", 2 * $m), $z1 . str_repeat("\0", $m), $z0 ); return ltrim($xy, "\0"); } /** * Perform polynomial multiplication on 2x 32-bit numbers, returning * a 64-bit number * * @param string $x * @param string $y * @return string * @link https://www.bearssl.org/constanttime.html#ghash-for-gcm */ private static function subMultiply($x, $y) { $x = unpack('N', $x)[1]; $y = unpack('N', $y)[1]; $x0 = $x & 0x11111111; $x1 = $x & 0x22222222; $x2 = $x & 0x44444444; $x3 = $x & 0x88888888; $y0 = $y & 0x11111111; $y1 = $y & 0x22222222; $y2 = $y & 0x44444444; $y3 = $y & 0x88888888; $z0 = ($x0 * $y0) ^ ($x1 * $y3) ^ ($x2 * $y2) ^ ($x3 * $y1); $z1 = ($x0 * $y1) ^ ($x1 * $y0) ^ ($x2 * $y3) ^ ($x3 * $y2); $z2 = ($x0 * $y2) ^ ($x1 * $y1) ^ ($x2 * $y0) ^ ($x3 * $y3); $z3 = ($x0 * $y3) ^ ($x1 * $y2) ^ ($x2 * $y1) ^ ($x3 * $y0); $z0 &= 0x1111111111111111; $z1 &= 0x2222222222222222; $z2 &= 0x4444444444444444; $z3 &= -8608480567731124088; // 0x8888888888888888 gets interpreted as a float $z = $z0 | $z1 | $z2 | $z3; return pack('J', $z); } /** * Adds two numbers * * @param string $x * @param string $y * @return string */ private static function subAdd2($x, $y) { $length = max(strlen($x), strlen($y)); $x = str_pad($x, $length, "\0", STR_PAD_LEFT); $y = str_pad($y, $length, "\0", STR_PAD_LEFT); return $x ^ $y; } /** * Adds three numbers * * @param string $x * @param string $y * @return string */ private static function subAdd3($x, $y, $z) { $length = max(strlen($x), strlen($y), strlen($z)); $x = str_pad($x, $length, "\0", STR_PAD_LEFT); $y = str_pad($y, $length, "\0", STR_PAD_LEFT); $z = str_pad($z, $length, "\0", STR_PAD_LEFT); return $x ^ $y ^ $z; } /** * Adds two BinaryFieldIntegers. * * @return static */ public function add(self $y) { static::checkInstance($this, $y); $length = strlen(static::$modulo[$this->instanceID]); $x = str_pad($this->value, $length, "\0", STR_PAD_LEFT); $y = str_pad($y->value, $length, "\0", STR_PAD_LEFT); return new static($this->instanceID, $x ^ $y); } /** * Subtracts two BinaryFieldIntegers. * * @return static */ public function subtract(self $x) { return $this->add($x); } /** * Multiplies two BinaryFieldIntegers. * * @return static */ public function multiply(self $y) { static::checkInstance($this, $y); return new static($this->instanceID, static::polynomialMultiply($this->value, $y->value)); } /** * Returns the modular inverse of a BinaryFieldInteger * * @return static */ public function modInverse() { $remainder0 = static::$modulo[$this->instanceID]; $remainder1 = $this->value; if ($remainder1 == '') { return new static($this->instanceID); } $aux0 = "\0"; $aux1 = "\1"; while ($remainder1 != "\1") { list($q, $r) = static::polynomialDivide($remainder0, $remainder1); $remainder0 = $remainder1; $remainder1 = $r; // the auxiliary in row n is given by the sum of the auxiliary in // row n-2 and the product of the quotient and the auxiliary in row // n-1 $temp = static::polynomialMultiply($aux1, $q); $aux = str_pad($aux0, strlen($temp), "\0", STR_PAD_LEFT) ^ str_pad($temp, strlen($aux0), "\0", STR_PAD_LEFT); $aux0 = $aux1; $aux1 = $aux; } $temp = new static($this->instanceID); $temp->value = ltrim($aux1, "\0"); return $temp; } /** * Divides two PrimeFieldIntegers. * * @return static */ public function divide(self $x) { static::checkInstance($this, $x); $x = $x->modInverse(); return $this->multiply($x); } /** * Negate * * A negative number can be written as 0-12. With modulos, 0 is the same thing as the modulo * so 0-12 is the same thing as modulo-12 * * @return object */ public function negate() { $x = str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT); return new static($this->instanceID, $x ^ static::$modulo[$this->instanceID]); } /** * Returns the modulo * * @return string */ public static function getModulo($instanceID) { return static::$modulo[$instanceID]; } /** * Converts an Integer to a byte string (eg. base-256). * * @return string */ public function toBytes() { return str_pad($this->value, strlen(static::$modulo[$this->instanceID]), "\0", STR_PAD_LEFT); } /** * Converts an Integer to a hex string (eg. base-16). * * @return string */ public function toHex() { return Strings::bin2hex($this->toBytes()); } /** * Converts an Integer to a bit string (eg. base-2). * * @return string */ public function toBits() { //return str_pad(BinaryField::base256ToBase2($this->value), strlen(static::$modulo[$this->instanceID]), '0', STR_PAD_LEFT); return BinaryField::base256ToBase2($this->value); } /** * Converts an Integer to a BigInteger * * @return string */ public function toBigInteger() { return new BigInteger($this->value, 256); } /** * __toString() magic method * */ public function __toString() { return (string) $this->toBigInteger(); } /** * __debugInfo() magic method * */ public function __debugInfo() { return ['value' => $this->toHex()]; } }