ok
Direktori : /opt/alt/postgresql11/usr/share/doc/alt-postgresql11-9.2.24/html/ |
Current File : //opt/alt/postgresql11/usr/share/doc/alt-postgresql11-9.2.24/html/xfunc-sql.html |
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >Query Language (SQL) Functions</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK REV="MADE" HREF="mailto:pgsql-docs@postgresql.org"><LINK REL="HOME" TITLE="PostgreSQL 9.2.24 Documentation" HREF="index.html"><LINK REL="UP" TITLE="Extending SQL" HREF="extend.html"><LINK REL="PREVIOUS" TITLE="User-defined Functions" HREF="xfunc.html"><LINK REL="NEXT" TITLE="Function Overloading" HREF="xfunc-overload.html"><LINK REL="STYLESHEET" TYPE="text/css" HREF="stylesheet.css"><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1"><META NAME="creation" CONTENT="2017-11-06T22:43:11"></HEAD ><BODY CLASS="SECT1" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="5" ALIGN="center" VALIGN="bottom" ><A HREF="index.html" >PostgreSQL 9.2.24 Documentation</A ></TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A TITLE="User-defined Functions" HREF="xfunc.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A HREF="extend.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="60%" ALIGN="center" VALIGN="bottom" >Chapter 35. Extending <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM ></TD ><TD WIDTH="20%" ALIGN="right" VALIGN="top" ><A TITLE="Function Overloading" HREF="xfunc-overload.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="SECT1" ><H1 CLASS="SECT1" ><A NAME="XFUNC-SQL" >35.4. Query Language (<ACRONYM CLASS="ACRONYM" >SQL</ACRONYM >) Functions</A ></H1 ><P > SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the list. In the simple (non-set) case, the first row of the last query's result will be returned. (Bear in mind that <SPAN CLASS="QUOTE" >"the first row"</SPAN > of a multirow result is not well-defined unless you use <TT CLASS="LITERAL" >ORDER BY</TT >.) If the last query happens to return no rows at all, the null value will be returned. </P ><P > Alternatively, an SQL function can be declared to return a set, by specifying the function's return type as <TT CLASS="LITERAL" >SETOF <TT CLASS="REPLACEABLE" ><I >sometype</I ></TT ></TT >, or equivalently by declaring it as <TT CLASS="LITERAL" >RETURNS TABLE(<TT CLASS="REPLACEABLE" ><I >columns</I ></TT >)</TT >. In this case all rows of the last query's result are returned. Further details appear below. </P ><P > The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon after the last statement is optional. Unless the function is declared to return <TT CLASS="TYPE" >void</TT >, the last statement must be a <TT CLASS="COMMAND" >SELECT</TT >, or an <TT CLASS="COMMAND" >INSERT</TT >, <TT CLASS="COMMAND" >UPDATE</TT >, or <TT CLASS="COMMAND" >DELETE</TT > that has a <TT CLASS="LITERAL" >RETURNING</TT > clause. </P ><P > Any collection of commands in the <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > language can be packaged together and defined as a function. Besides <TT CLASS="COMMAND" >SELECT</TT > queries, the commands can include data modification queries (<TT CLASS="COMMAND" >INSERT</TT >, <TT CLASS="COMMAND" >UPDATE</TT >, and <TT CLASS="COMMAND" >DELETE</TT >), as well as other SQL commands. (You cannot use transaction control commands, e.g. <TT CLASS="COMMAND" >COMMIT</TT >, <TT CLASS="COMMAND" >SAVEPOINT</TT >, and some utility commands, e.g. <TT CLASS="LITERAL" >VACUUM</TT >, in <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > functions.) However, the final command must be a <TT CLASS="COMMAND" >SELECT</TT > or have a <TT CLASS="LITERAL" >RETURNING</TT > clause that returns whatever is specified as the function's return type. Alternatively, if you want to define a SQL function that performs actions but has no useful value to return, you can define it as returning <TT CLASS="TYPE" >void</TT >. For example, this function removes rows with negative salaries from the <TT CLASS="LITERAL" >emp</TT > table: </P><PRE CLASS="SCREEN" >CREATE FUNCTION clean_emp() RETURNS void AS ' DELETE FROM emp WHERE salary < 0; ' LANGUAGE SQL; SELECT clean_emp(); clean_emp ----------- (1 row)</PRE ><P> </P ><P > The syntax of the <TT CLASS="COMMAND" >CREATE FUNCTION</TT > command requires the function body to be written as a string constant. It is usually most convenient to use dollar quoting (see <A HREF="sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING" >Section 4.1.2.4</A >) for the string constant. If you choose to use regular single-quoted string constant syntax, you must double single quote marks (<TT CLASS="LITERAL" >'</TT >) and backslashes (<TT CLASS="LITERAL" >\</TT >) (assuming escape string syntax) in the body of the function (see <A HREF="sql-syntax-lexical.html#SQL-SYNTAX-STRINGS" >Section 4.1.2.1</A >). </P ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-FUNCTION-ARGUMENTS" >35.4.1. Arguments for <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions</A ></H2 ><P > Arguments of a SQL function can be referenced in the function body using either names or numbers. Examples of both methods appear below. </P ><P > To use a name, declare the function argument as having a name, and then just write that name in the function body. If the argument name is the same as any column name in the current SQL command within the function, the column name will take precedence. To override this, qualify the argument name with the name of the function itself, that is <TT CLASS="LITERAL" ><TT CLASS="REPLACEABLE" ><I >function_name</I ></TT >.<TT CLASS="REPLACEABLE" ><I >argument_name</I ></TT ></TT >. (If this would conflict with a qualified column name, again the column name wins. You can avoid the ambiguity by choosing a different alias for the table within the SQL command.) </P ><P > In the older numeric approach, arguments are referenced using the syntax <TT CLASS="LITERAL" >$<TT CLASS="REPLACEABLE" ><I >n</I ></TT ></TT >: <TT CLASS="LITERAL" >$1</TT > refers to the first input argument, <TT CLASS="LITERAL" >$2</TT > to the second, and so on. This will work whether or not the particular argument was declared with a name. </P ><P > If an argument is of a composite type, then the dot notation, e.g., <TT CLASS="LITERAL" >argname.fieldname</TT > or <TT CLASS="LITERAL" >$1.fieldname</TT >, can be used to access attributes of the argument. Again, you might need to qualify the argument's name with the function name to make the form with an argument name unambiguous. </P ><P > SQL function arguments can only be used as data values, not as identifiers. Thus for example this is reasonable: </P><PRE CLASS="PROGRAMLISTING" >INSERT INTO mytable VALUES ($1);</PRE ><P> but this will not work: </P><PRE CLASS="PROGRAMLISTING" >INSERT INTO $1 VALUES (42);</PRE ><P> </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > The ability to use names to reference SQL function arguments was added in <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > 9.2. Functions to be used in older servers must use the <TT CLASS="LITERAL" >$<TT CLASS="REPLACEABLE" ><I >n</I ></TT ></TT > notation. </P ></BLOCKQUOTE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-BASE-FUNCTIONS" >35.4.2. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions on Base Types</A ></H2 ><P > The simplest possible <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > function has no arguments and simply returns a base type, such as <TT CLASS="TYPE" >integer</TT >: </P><PRE CLASS="SCREEN" >CREATE FUNCTION one() RETURNS integer AS $$ SELECT 1 AS result; $$ LANGUAGE SQL; -- Alternative syntax for string literal: CREATE FUNCTION one() RETURNS integer AS ' SELECT 1 AS result; ' LANGUAGE SQL; SELECT one(); one ----- 1</PRE ><P> </P ><P > Notice that we defined a column alias within the function body for the result of the function (with the name <TT CLASS="LITERAL" >result</TT >), but this column alias is not visible outside the function. Hence, the result is labeled <TT CLASS="LITERAL" >one</TT > instead of <TT CLASS="LITERAL" >result</TT >. </P ><P > It is almost as easy to define <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > functions that take base types as arguments: </P><PRE CLASS="SCREEN" >CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$ SELECT x + y; $$ LANGUAGE SQL; SELECT add_em(1, 2) AS answer; answer -------- 3</PRE ><P> </P ><P > Alternatively, we could dispense with names for the arguments and use numbers: </P><PRE CLASS="SCREEN" >CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$ SELECT $1 + $2; $$ LANGUAGE SQL; SELECT add_em(1, 2) AS answer; answer -------- 3</PRE ><P> </P ><P > Here is a more useful function, which might be used to debit a bank account: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$ UPDATE bank SET balance = balance - debit WHERE accountno = tf1.accountno; SELECT 1; $$ LANGUAGE SQL;</PRE ><P> A user could execute this function to debit account 17 by $100.00 as follows: </P><PRE CLASS="PROGRAMLISTING" >SELECT tf1(17, 100.0);</PRE ><P> </P ><P > In this example, we chose the name <TT CLASS="LITERAL" >accountno</TT > for the first argument, but this is the same as the name of a column in the <TT CLASS="LITERAL" >bank</TT > table. Within the <TT CLASS="COMMAND" >UPDATE</TT > command, <TT CLASS="LITERAL" >accountno</TT > refers to the column <TT CLASS="LITERAL" >bank.accountno</TT >, so <TT CLASS="LITERAL" >tf1.accountno</TT > must be used to refer to the argument. We could of course avoid this by using a different name for the argument. </P ><P > In practice one would probably like a more useful result from the function than a constant 1, so a more likely definition is: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$ UPDATE bank SET balance = balance - debit WHERE accountno = tf1.accountno; SELECT balance FROM bank WHERE accountno = tf1.accountno; $$ LANGUAGE SQL;</PRE ><P> which adjusts the balance and returns the new balance. The same thing could be done in one command using <TT CLASS="LITERAL" >RETURNING</TT >: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$ UPDATE bank SET balance = balance - debit WHERE accountno = tf1.accountno RETURNING balance; $$ LANGUAGE SQL;</PRE ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-COMPOSITE-FUNCTIONS" >35.4.3. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions on Composite Types</A ></H2 ><P > When writing functions with arguments of composite types, we must not only specify which argument we want but also the desired attribute (field) of that argument. For example, suppose that <TT CLASS="TYPE" >emp</TT > is a table containing employee data, and therefore also the name of the composite type of each row of the table. Here is a function <CODE CLASS="FUNCTION" >double_salary</CODE > that computes what someone's salary would be if it were doubled: </P><PRE CLASS="SCREEN" >CREATE TABLE emp ( name text, salary numeric, age integer, cubicle point ); INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)'); CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$ SELECT $1.salary * 2 AS salary; $$ LANGUAGE SQL; SELECT name, double_salary(emp.*) AS dream FROM emp WHERE emp.cubicle ~= point '(2,1)'; name | dream ------+------- Bill | 8400</PRE ><P> </P ><P > Notice the use of the syntax <TT CLASS="LITERAL" >$1.salary</TT > to select one field of the argument row value. Also notice how the calling <TT CLASS="COMMAND" >SELECT</TT > command uses <TT CLASS="REPLACEABLE" ><I >table_name</I ></TT ><TT CLASS="LITERAL" >.*</TT > to select the entire current row of a table as a composite value. The table row can alternatively be referenced using just the table name, like this: </P><PRE CLASS="SCREEN" >SELECT name, double_salary(emp) AS dream FROM emp WHERE emp.cubicle ~= point '(2,1)';</PRE ><P> but this usage is deprecated since it's easy to get confused. (See <A HREF="rowtypes.html#ROWTYPES-USAGE" >Section 8.16.5</A > for details about these two notations for the composite value of a table row.) </P ><P > Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the <TT CLASS="LITERAL" >ROW</TT > construct. For example, we could adjust the data being passed to the function: </P><PRE CLASS="SCREEN" >SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream FROM emp;</PRE ><P> </P ><P > It is also possible to build a function that returns a composite type. This is an example of a function that returns a single <TT CLASS="TYPE" >emp</TT > row: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION new_emp() RETURNS emp AS $$ SELECT text 'None' AS name, 1000.0 AS salary, 25 AS age, point '(2,2)' AS cubicle; $$ LANGUAGE SQL;</PRE ><P> In this example we have specified each of the attributes with a constant value, but any computation could have been substituted for these constants. </P ><P > Note two important things about defining the function: <P ></P ></P><UL ><LI ><P > The select list order in the query must be exactly the same as that in which the columns appear in the table associated with the composite type. (Naming the columns, as we did above, is irrelevant to the system.) </P ></LI ><LI ><P > You must typecast the expressions to match the definition of the composite type, or you will get errors like this: </P><PRE CLASS="SCREEN" ><SAMP CLASS="COMPUTEROUTPUT" >ERROR: function declared to return emp returns varchar instead of text at column 1</SAMP ></PRE ><P> </P ></LI ></UL ><P> </P ><P > A different way to define the same function is: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION new_emp() RETURNS emp AS $$ SELECT ROW('None', 1000.0, 25, '(2,2)')::emp; $$ LANGUAGE SQL;</PRE ><P> Here we wrote a <TT CLASS="COMMAND" >SELECT</TT > that returns just a single column of the correct composite type. This isn't really better in this situation, but it is a handy alternative in some cases — for example, if we need to compute the result by calling another function that returns the desired composite value. </P ><P > We could call this function directly either by using it in a value expression: </P><PRE CLASS="SCREEN" >SELECT new_emp(); new_emp -------------------------- (None,1000.0,25,"(2,2)")</PRE ><P> or by calling it as a table function: </P><PRE CLASS="SCREEN" >SELECT * FROM new_emp(); name | salary | age | cubicle ------+--------+-----+--------- None | 1000.0 | 25 | (2,2)</PRE ><P> The second way is described more fully in <A HREF="xfunc-sql.html#XFUNC-SQL-TABLE-FUNCTIONS" >Section 35.4.7</A >. </P ><P > When you use a function that returns a composite type, you might want only one field (attribute) from its result. You can do that with syntax like this: </P><PRE CLASS="SCREEN" >SELECT (new_emp()).name; name ------ None</PRE ><P> The extra parentheses are needed to keep the parser from getting confused. If you try to do it without them, you get something like this: </P><PRE CLASS="SCREEN" >SELECT new_emp().name; ERROR: syntax error at or near "." LINE 1: SELECT new_emp().name; ^</PRE ><P> </P ><P > Another option is to use functional notation for extracting an attribute: </P><PRE CLASS="SCREEN" >SELECT name(new_emp()); name ------ None</PRE ><P> As explained in <A HREF="rowtypes.html#ROWTYPES-USAGE" >Section 8.16.5</A >, the field notation and functional notation are equivalent. </P ><P > Another way to use a function returning a composite type is to pass the result to another function that accepts the correct row type as input: </P><PRE CLASS="SCREEN" >CREATE FUNCTION getname(emp) RETURNS text AS $$ SELECT $1.name; $$ LANGUAGE SQL; SELECT getname(new_emp()); getname --------- None (1 row)</PRE ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-OUTPUT-PARAMETERS" >35.4.4. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions with Output Parameters</A ></H2 ><P > An alternative way of describing a function's results is to define it with <I CLASS="FIRSTTERM" >output parameters</I >, as in this example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int) AS 'SELECT x + y' LANGUAGE SQL; SELECT add_em(3,7); add_em -------- 10 (1 row)</PRE ><P> This is not essentially different from the version of <TT CLASS="LITERAL" >add_em</TT > shown in <A HREF="xfunc-sql.html#XFUNC-SQL-BASE-FUNCTIONS" >Section 35.4.2</A >. The real value of output parameters is that they provide a convenient way of defining functions that return several columns. For example, </P><PRE CLASS="SCREEN" >CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int) AS 'SELECT x + y, x * y' LANGUAGE SQL; SELECT * FROM sum_n_product(11,42); sum | product -----+--------- 53 | 462 (1 row)</PRE ><P> What has essentially happened here is that we have created an anonymous composite type for the result of the function. The above example has the same end result as </P><PRE CLASS="SCREEN" >CREATE TYPE sum_prod AS (sum int, product int); CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod AS 'SELECT $1 + $2, $1 * $2' LANGUAGE SQL;</PRE ><P> but not having to bother with the separate composite type definition is often handy. Notice that the names attached to the output parameters are not just decoration, but determine the column names of the anonymous composite type. (If you omit a name for an output parameter, the system will choose a name on its own.) </P ><P > Notice that output parameters are not included in the calling argument list when invoking such a function from SQL. This is because <SPAN CLASS="PRODUCTNAME" >PostgreSQL</SPAN > considers only the input parameters to define the function's calling signature. That means also that only the input parameters matter when referencing the function for purposes such as dropping it. We could drop the above function with either of </P><PRE CLASS="SCREEN" >DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int); DROP FUNCTION sum_n_product (int, int);</PRE ><P> </P ><P > Parameters can be marked as <TT CLASS="LITERAL" >IN</TT > (the default), <TT CLASS="LITERAL" >OUT</TT >, <TT CLASS="LITERAL" >INOUT</TT >, or <TT CLASS="LITERAL" >VARIADIC</TT >. An <TT CLASS="LITERAL" >INOUT</TT > parameter serves as both an input parameter (part of the calling argument list) and an output parameter (part of the result record type). <TT CLASS="LITERAL" >VARIADIC</TT > parameters are input parameters, but are treated specially as described next. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-VARIADIC-FUNCTIONS" >35.4.5. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions with Variable Numbers of Arguments</A ></H2 ><P > <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > functions can be declared to accept variable numbers of arguments, so long as all the <SPAN CLASS="QUOTE" >"optional"</SPAN > arguments are of the same data type. The optional arguments will be passed to the function as an array. The function is declared by marking the last parameter as <TT CLASS="LITERAL" >VARIADIC</TT >; this parameter must be declared as being of an array type. For example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$ SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i); $$ LANGUAGE SQL; SELECT mleast(10, -1, 5, 4.4); mleast -------- -1 (1 row)</PRE ><P> Effectively, all the actual arguments at or beyond the <TT CLASS="LITERAL" >VARIADIC</TT > position are gathered up into a one-dimensional array, as if you had written </P><PRE CLASS="SCREEN" >SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work</PRE ><P> You can't actually write that, though — or at least, it will not match this function definition. A parameter marked <TT CLASS="LITERAL" >VARIADIC</TT > matches one or more occurrences of its element type, not of its own type. </P ><P > Sometimes it is useful to be able to pass an already-constructed array to a variadic function; this is particularly handy when one variadic function wants to pass on its array parameter to another one. You can do that by specifying <TT CLASS="LITERAL" >VARIADIC</TT > in the call: </P><PRE CLASS="SCREEN" >SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);</PRE ><P> This prevents expansion of the function's variadic parameter into its element type, thereby allowing the array argument value to match normally. <TT CLASS="LITERAL" >VARIADIC</TT > can only be attached to the last actual argument of a function call. </P ><P > Specifying <TT CLASS="LITERAL" >VARIADIC</TT > in the call is also the only way to pass an empty array to a variadic function, for example: </P><PRE CLASS="SCREEN" >SELECT mleast(VARIADIC ARRAY[]::numeric[]);</PRE ><P> Simply writing <TT CLASS="LITERAL" >SELECT mleast()</TT > does not work because a variadic parameter must match at least one actual argument. (You could define a second function also named <TT CLASS="LITERAL" >mleast</TT >, with no parameters, if you wanted to allow such calls.) </P ><P > The array element parameters generated from a variadic parameter are treated as not having any names of their own. This means it is not possible to call a variadic function using named arguments (<A HREF="sql-syntax-calling-funcs.html" >Section 4.3</A >), except when you specify <TT CLASS="LITERAL" >VARIADIC</TT >. For example, this will work: </P><PRE CLASS="SCREEN" >SELECT mleast(VARIADIC arr := ARRAY[10, -1, 5, 4.4]);</PRE ><P> but not these: </P><PRE CLASS="SCREEN" >SELECT mleast(arr := 10); SELECT mleast(arr := ARRAY[10, -1, 5, 4.4]);</PRE ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-PARAMETER-DEFAULTS" >35.4.6. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions with Default Values for Arguments</A ></H2 ><P > Functions can be declared with default values for some or all input arguments. The default values are inserted whenever the function is called with insufficiently many actual arguments. Since arguments can only be omitted from the end of the actual argument list, all parameters after a parameter with a default value have to have default values as well. (Although the use of named argument notation could allow this restriction to be relaxed, it's still enforced so that positional argument notation works sensibly.) </P ><P > For example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3) RETURNS int LANGUAGE SQL AS $$ SELECT $1 + $2 + $3; $$; SELECT foo(10, 20, 30); foo ----- 60 (1 row) SELECT foo(10, 20); foo ----- 33 (1 row) SELECT foo(10); foo ----- 15 (1 row) SELECT foo(); -- fails since there is no default for the first argument ERROR: function foo() does not exist</PRE ><P> The <TT CLASS="LITERAL" >=</TT > sign can also be used in place of the key word <TT CLASS="LITERAL" >DEFAULT</TT >. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-TABLE-FUNCTIONS" >35.4.7. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions as Table Sources</A ></H2 ><P > All SQL functions can be used in the <TT CLASS="LITERAL" >FROM</TT > clause of a query, but it is particularly useful for functions returning composite types. If the function is defined to return a base type, the table function produces a one-column table. If the function is defined to return a composite type, the table function produces a column for each attribute of the composite type. </P ><P > Here is an example: </P><PRE CLASS="SCREEN" >CREATE TABLE foo (fooid int, foosubid int, fooname text); INSERT INTO foo VALUES (1, 1, 'Joe'); INSERT INTO foo VALUES (1, 2, 'Ed'); INSERT INTO foo VALUES (2, 1, 'Mary'); CREATE FUNCTION getfoo(int) RETURNS foo AS $$ SELECT * FROM foo WHERE fooid = $1; $$ LANGUAGE SQL; SELECT *, upper(fooname) FROM getfoo(1) AS t1; fooid | foosubid | fooname | upper -------+----------+---------+------- 1 | 1 | Joe | JOE (1 row)</PRE ><P> As the example shows, we can work with the columns of the function's result just the same as if they were columns of a regular table. </P ><P > Note that we only got one row out of the function. This is because we did not use <TT CLASS="LITERAL" >SETOF</TT >. That is described in the next section. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-FUNCTIONS-RETURNING-SET" >35.4.8. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions Returning Sets</A ></H2 ><P > When an SQL function is declared as returning <TT CLASS="LITERAL" >SETOF <TT CLASS="REPLACEABLE" ><I >sometype</I ></TT ></TT >, the function's final query is executed to completion, and each row it outputs is returned as an element of the result set. </P ><P > This feature is normally used when calling the function in the <TT CLASS="LITERAL" >FROM</TT > clause. In this case each row returned by the function becomes a row of the table seen by the query. For example, assume that table <TT CLASS="LITERAL" >foo</TT > has the same contents as above, and we say: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$ SELECT * FROM foo WHERE fooid = $1; $$ LANGUAGE SQL; SELECT * FROM getfoo(1) AS t1;</PRE ><P> Then we would get: </P><PRE CLASS="SCREEN" > fooid | foosubid | fooname -------+----------+--------- 1 | 1 | Joe 1 | 2 | Ed (2 rows)</PRE ><P> </P ><P > It is also possible to return multiple rows with the columns defined by output parameters, like this: </P><PRE CLASS="PROGRAMLISTING" >CREATE TABLE tab (y int, z int); INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8); CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int) RETURNS SETOF record AS $$ SELECT $1 + tab.y, $1 * tab.y FROM tab; $$ LANGUAGE SQL; SELECT * FROM sum_n_product_with_tab(10); sum | product -----+--------- 11 | 10 13 | 30 15 | 50 17 | 70 (4 rows)</PRE ><P> The key point here is that you must write <TT CLASS="LITERAL" >RETURNS SETOF record</TT > to indicate that the function returns multiple rows instead of just one. If there is only one output parameter, write that parameter's type instead of <TT CLASS="TYPE" >record</TT >. </P ><P > Currently, functions returning sets can also be called in the select list of a query. For each row that the query generates by itself, the function returning set is invoked, and an output row is generated for each element of the function's result set. Note, however, that this capability is deprecated and might be removed in future releases. The following is an example function returning a set from the select list: </P><PRE CLASS="SCREEN" >CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$ SELECT name FROM nodes WHERE parent = $1 $$ LANGUAGE SQL; SELECT * FROM nodes; name | parent -----------+-------- Top | Child1 | Top Child2 | Top Child3 | Top SubChild1 | Child1 SubChild2 | Child1 (6 rows) SELECT listchildren('Top'); listchildren -------------- Child1 Child2 Child3 (3 rows) SELECT name, listchildren(name) FROM nodes; name | listchildren --------+-------------- Top | Child1 Top | Child2 Top | Child3 Child1 | SubChild1 Child1 | SubChild2 (5 rows)</PRE ><P> In the last <TT CLASS="COMMAND" >SELECT</TT >, notice that no output row appears for <TT CLASS="LITERAL" >Child2</TT >, <TT CLASS="LITERAL" >Child3</TT >, etc. This happens because <CODE CLASS="FUNCTION" >listchildren</CODE > returns an empty set for those arguments, so no result rows are generated. </P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >Note: </B > If a function's last command is <TT CLASS="COMMAND" >INSERT</TT >, <TT CLASS="COMMAND" >UPDATE</TT >, or <TT CLASS="COMMAND" >DELETE</TT > with <TT CLASS="LITERAL" >RETURNING</TT >, that command will always be executed to completion, even if the function is not declared with <TT CLASS="LITERAL" >SETOF</TT > or the calling query does not fetch all the result rows. Any extra rows produced by the <TT CLASS="LITERAL" >RETURNING</TT > clause are silently dropped, but the commanded table modifications still happen (and are all completed before returning from the function). </P ></BLOCKQUOTE ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="XFUNC-SQL-FUNCTIONS-RETURNING-TABLE" >35.4.9. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions Returning <TT CLASS="LITERAL" >TABLE</TT ></A ></H2 ><P > There is another way to declare a function as returning a set, which is to use the syntax <TT CLASS="LITERAL" >RETURNS TABLE(<TT CLASS="REPLACEABLE" ><I >columns</I ></TT >)</TT >. This is equivalent to using one or more <TT CLASS="LITERAL" >OUT</TT > parameters plus marking the function as returning <TT CLASS="LITERAL" >SETOF record</TT > (or <TT CLASS="LITERAL" >SETOF</TT > a single output parameter's type, as appropriate). This notation is specified in recent versions of the SQL standard, and thus may be more portable than using <TT CLASS="LITERAL" >SETOF</TT >. </P ><P > For example, the preceding sum-and-product example could also be done this way: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION sum_n_product_with_tab (x int) RETURNS TABLE(sum int, product int) AS $$ SELECT $1 + tab.y, $1 * tab.y FROM tab; $$ LANGUAGE SQL;</PRE ><P> It is not allowed to use explicit <TT CLASS="LITERAL" >OUT</TT > or <TT CLASS="LITERAL" >INOUT</TT > parameters with the <TT CLASS="LITERAL" >RETURNS TABLE</TT > notation — you must put all the output columns in the <TT CLASS="LITERAL" >TABLE</TT > list. </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN52570" >35.4.10. Polymorphic <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions</A ></H2 ><P > <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > functions can be declared to accept and return the polymorphic types <TT CLASS="TYPE" >anyelement</TT >, <TT CLASS="TYPE" >anyarray</TT >, <TT CLASS="TYPE" >anynonarray</TT >, <TT CLASS="TYPE" >anyenum</TT >, and <TT CLASS="TYPE" >anyrange</TT >. See <A HREF="extend-type-system.html#EXTEND-TYPES-POLYMORPHIC" >Section 35.2.5</A > for a more detailed explanation of polymorphic functions. Here is a polymorphic function <CODE CLASS="FUNCTION" >make_array</CODE > that builds up an array from two arbitrary data type elements: </P><PRE CLASS="SCREEN" >CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$ SELECT ARRAY[$1, $2]; $$ LANGUAGE SQL; SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray; intarray | textarray ----------+----------- {1,2} | {a,b} (1 row)</PRE ><P> </P ><P > Notice the use of the typecast <TT CLASS="LITERAL" >'a'::text</TT > to specify that the argument is of type <TT CLASS="TYPE" >text</TT >. This is required if the argument is just a string literal, since otherwise it would be treated as type <TT CLASS="TYPE" >unknown</TT >, and array of <TT CLASS="TYPE" >unknown</TT > is not a valid type. Without the typecast, you will get errors like this: </P><PRE CLASS="SCREEN" ><SAMP CLASS="COMPUTEROUTPUT" >ERROR: could not determine polymorphic type because input has type "unknown"</SAMP ></PRE ><P> </P ><P > It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$ SELECT $1 > $2; $$ LANGUAGE SQL; SELECT is_greater(1, 2); is_greater ------------ f (1 row) CREATE FUNCTION invalid_func() RETURNS anyelement AS $$ SELECT 1; $$ LANGUAGE SQL; ERROR: cannot determine result data type DETAIL: A function returning a polymorphic type must have at least one polymorphic argument.</PRE ><P> </P ><P > Polymorphism can be used with functions that have output arguments. For example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray) AS 'select $1, array[$1,$1]' LANGUAGE SQL; SELECT * FROM dup(22); f2 | f3 ----+--------- 22 | {22,22} (1 row)</PRE ><P> </P ><P > Polymorphism can also be used with variadic functions. For example: </P><PRE CLASS="SCREEN" >CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$ SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i); $$ LANGUAGE SQL; SELECT anyleast(10, -1, 5, 4); anyleast ---------- -1 (1 row) SELECT anyleast('abc'::text, 'def'); anyleast ---------- abc (1 row) CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$ SELECT array_to_string($2, $1); $$ LANGUAGE SQL; SELECT concat_values('|', 1, 4, 2); concat_values --------------- 1|4|2 (1 row)</PRE ><P> </P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN52596" >35.4.11. <ACRONYM CLASS="ACRONYM" >SQL</ACRONYM > Functions with Collations</A ></H2 ><P > When a SQL function has one or more parameters of collatable data types, a collation is identified for each function call depending on the collations assigned to the actual arguments, as described in <A HREF="collation.html" >Section 22.2</A >. If a collation is successfully identified (i.e., there are no conflicts of implicit collations among the arguments) then all the collatable parameters are treated as having that collation implicitly. This will affect the behavior of collation-sensitive operations within the function. For example, using the <CODE CLASS="FUNCTION" >anyleast</CODE > function described above, the result of </P><PRE CLASS="PROGRAMLISTING" >SELECT anyleast('abc'::text, 'ABC');</PRE ><P> will depend on the database's default collation. In <TT CLASS="LITERAL" >C</TT > locale the result will be <TT CLASS="LITERAL" >ABC</TT >, but in many other locales it will be <TT CLASS="LITERAL" >abc</TT >. The collation to use can be forced by adding a <TT CLASS="LITERAL" >COLLATE</TT > clause to any of the arguments, for example </P><PRE CLASS="PROGRAMLISTING" >SELECT anyleast('abc'::text, 'ABC' COLLATE "C");</PRE ><P> Alternatively, if you wish a function to operate with a particular collation regardless of what it is called with, insert <TT CLASS="LITERAL" >COLLATE</TT > clauses as needed in the function definition. This version of <CODE CLASS="FUNCTION" >anyleast</CODE > would always use <TT CLASS="LITERAL" >en_US</TT > locale to compare strings: </P><PRE CLASS="PROGRAMLISTING" >CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$ SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i); $$ LANGUAGE SQL;</PRE ><P> But note that this will throw an error if applied to a non-collatable data type. </P ><P > If no common collation can be identified among the actual arguments, then a SQL function treats its parameters as having their data types' default collation (which is usually the database's default collation, but could be different for parameters of domain types). </P ><P > The behavior of collatable parameters can be thought of as a limited form of polymorphism, applicable only to textual data types. </P ></DIV ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="xfunc.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="index.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="xfunc-overload.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >User-defined Functions</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="extend.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >Function Overloading</TD ></TR ></TABLE ></DIV ></BODY ></HTML >