ok

Mini Shell

Direktori : /opt/alt/python35/lib64/python3.5/site-packages/Crypto/SelfTest/PublicKey/
Upload File :
Current File : //opt/alt/python35/lib64/python3.5/site-packages/Crypto/SelfTest/PublicKey/test_RSA.py

# -*- coding: utf-8 -*-
#
#  SelfTest/PublicKey/test_RSA.py: Self-test for the RSA primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""Self-test suite for Crypto.PublicKey.RSA"""

__revision__ = "$Id$"

import sys
import os
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
    from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *

import unittest
from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex

class RSATest(unittest.TestCase):
    # Test vectors from "RSA-OAEP and RSA-PSS test vectors (.zip file)"
    #   ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
    # See RSADSI's PKCS#1 page at
    #   http://www.rsa.com/rsalabs/node.asp?id=2125

    # from oaep-int.txt

    # TODO: PyCrypto treats the message as starting *after* the leading "00"
    # TODO: That behaviour should probably be changed in the future.
    plaintext = """
           eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2
        ca 82 31 0b 26 dc d8 7d 5c 68 f1 ee a8 f5 52 67
        c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af
        f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db
        4c dc fe 4f f4 77 28 b4 a1 b7 c1 36 2b aa d2 9a
        b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9
        82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f
        7b c2 75 19 52 81 ce 32 d2 f1 b7 6d 4d 35 3e 2d
    """

    ciphertext = """
        12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0
        39 a3 3d 1e 99 6f c8 2a 94 cc d3 00 74 c9 5d f7
        63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6
        53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb
        6d 84 b1 c3 1d 65 4a 19 70 e5 78 3b d6 eb 96 a0
        24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48
        da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d
        51 a7 4d df 85 d8 b5 0d e9 68 38 d6 06 3e 09 55
    """

    modulus = """
        bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7
        36 8d 07 ee d4 10 43 a4 40 d6 b6 f0 74 54 f5 1f
        b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48
        76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f
        af b8 e0 a3 df c7 37 72 3e e6 b4 b7 d9 3a 25 84
        ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e
        e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f
        e2 53 72 98 ca 2a 8f 59 46 f8 e5 fd 09 1d bd cb
    """

    e = 0x11    # public exponent

    prime_factor = """
        c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35
        3f 6c 42 d0 88 66 b1 d0 5a 0f 20 35 02 8b 9d 86
        98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf
        ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03
    """

    def setUp(self):
        global RSA, Random, bytes_to_long
        from Crypto.PublicKey import RSA
        from Crypto import Random
        from Crypto.Util.number import bytes_to_long, inverse
        self.n = bytes_to_long(a2b_hex(self.modulus))
        self.p = bytes_to_long(a2b_hex(self.prime_factor))

        # Compute q, d, and u from n, e, and p
        self.q = divmod(self.n, self.p)[0]
        self.d = inverse(self.e, (self.p-1)*(self.q-1))
        self.u = inverse(self.p, self.q)    # u = e**-1 (mod q)

        self.rsa = RSA

    def test_generate_1arg(self):
        """RSA (default implementation) generated key (1 argument)"""
        rsaObj = self.rsa.generate(1024)
        self._check_private_key(rsaObj)
        self._exercise_primitive(rsaObj)
        pub = rsaObj.publickey()
        self._check_public_key(pub)
        self._exercise_public_primitive(rsaObj)

    def test_generate_2arg(self):
        """RSA (default implementation) generated key (2 arguments)"""
        rsaObj = self.rsa.generate(1024, Random.new().read)
        self._check_private_key(rsaObj)
        self._exercise_primitive(rsaObj)
        pub = rsaObj.publickey()
        self._check_public_key(pub)
        self._exercise_public_primitive(rsaObj)

    def test_generate_3args(self):
        rsaObj = self.rsa.generate(1024, Random.new().read,e=65537)
        self._check_private_key(rsaObj)
        self._exercise_primitive(rsaObj)
        pub = rsaObj.publickey()
        self._check_public_key(pub)
        self._exercise_public_primitive(rsaObj)
        self.assertEqual(65537,rsaObj.e)

    def test_construct_2tuple(self):
        """RSA (default implementation) constructed key (2-tuple)"""
        pub = self.rsa.construct((self.n, self.e))
        self._check_public_key(pub)
        self._check_encryption(pub)
        self._check_verification(pub)

    def test_construct_3tuple(self):
        """RSA (default implementation) constructed key (3-tuple)"""
        rsaObj = self.rsa.construct((self.n, self.e, self.d))
        self._check_encryption(rsaObj)
        self._check_decryption(rsaObj)
        self._check_signing(rsaObj)
        self._check_verification(rsaObj)

    def test_construct_4tuple(self):
        """RSA (default implementation) constructed key (4-tuple)"""
        rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p))
        self._check_encryption(rsaObj)
        self._check_decryption(rsaObj)
        self._check_signing(rsaObj)
        self._check_verification(rsaObj)

    def test_construct_5tuple(self):
        """RSA (default implementation) constructed key (5-tuple)"""
        rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q))
        self._check_private_key(rsaObj)
        self._check_encryption(rsaObj)
        self._check_decryption(rsaObj)
        self._check_signing(rsaObj)
        self._check_verification(rsaObj)

    def test_construct_6tuple(self):
        """RSA (default implementation) constructed key (6-tuple)"""
        rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q, self.u))
        self._check_private_key(rsaObj)
        self._check_encryption(rsaObj)
        self._check_decryption(rsaObj)
        self._check_signing(rsaObj)
        self._check_verification(rsaObj)

    def test_factoring(self):
        rsaObj = self.rsa.construct([self.n, self.e, self.d])
        self.assertTrue(rsaObj.p==self.p or rsaObj.p==self.q)
        self.assertTrue(rsaObj.q==self.p or rsaObj.q==self.q)
        self.assertTrue(rsaObj.q*rsaObj.p == self.n)

        self.assertRaises(ValueError, self.rsa.construct, [self.n, self.e, self.n-1])

    def _check_private_key(self, rsaObj):
        # Check capabilities
        self.assertEqual(1, rsaObj.has_private())
        self.assertEqual(1, rsaObj.can_sign())
        self.assertEqual(1, rsaObj.can_encrypt())
        self.assertEqual(1, rsaObj.can_blind())

        # Check rsaObj.[nedpqu] -> rsaObj.key.[nedpqu] mapping
        self.assertEqual(rsaObj.n, rsaObj.key.n)
        self.assertEqual(rsaObj.e, rsaObj.key.e)
        self.assertEqual(rsaObj.d, rsaObj.key.d)
        self.assertEqual(rsaObj.p, rsaObj.key.p)
        self.assertEqual(rsaObj.q, rsaObj.key.q)
        self.assertEqual(rsaObj.u, rsaObj.key.u)

        # Sanity check key data
        self.assertEqual(rsaObj.n, rsaObj.p * rsaObj.q)     # n = pq
        self.assertEqual(1, rsaObj.d * rsaObj.e % ((rsaObj.p-1) * (rsaObj.q-1))) # ed = 1 (mod (p-1)(q-1))
        self.assertEqual(1, rsaObj.p * rsaObj.u % rsaObj.q) # pu = 1 (mod q)
        self.assertEqual(1, rsaObj.p > 1)   # p > 1
        self.assertEqual(1, rsaObj.q > 1)   # q > 1
        self.assertEqual(1, rsaObj.e > 1)   # e > 1
        self.assertEqual(1, rsaObj.d > 1)   # d > 1

    def _check_public_key(self, rsaObj):
        ciphertext = a2b_hex(self.ciphertext)

        # Check capabilities
        self.assertEqual(0, rsaObj.has_private())
        self.assertEqual(1, rsaObj.can_sign())
        self.assertEqual(1, rsaObj.can_encrypt())
        self.assertEqual(1, rsaObj.can_blind())

        # Check rsaObj.[ne] -> rsaObj.key.[ne] mapping
        self.assertEqual(rsaObj.n, rsaObj.key.n)
        self.assertEqual(rsaObj.e, rsaObj.key.e)

        # Check that private parameters are all missing
        self.assertEqual(0, hasattr(rsaObj, 'd'))
        self.assertEqual(0, hasattr(rsaObj, 'p'))
        self.assertEqual(0, hasattr(rsaObj, 'q'))
        self.assertEqual(0, hasattr(rsaObj, 'u'))
        self.assertEqual(0, hasattr(rsaObj.key, 'd'))
        self.assertEqual(0, hasattr(rsaObj.key, 'p'))
        self.assertEqual(0, hasattr(rsaObj.key, 'q'))
        self.assertEqual(0, hasattr(rsaObj.key, 'u'))

        # Sanity check key data
        self.assertEqual(1, rsaObj.e > 1)   # e > 1

        # Public keys should not be able to sign or decrypt
        self.assertRaises(TypeError, rsaObj.sign, ciphertext, b(""))
        self.assertRaises(TypeError, rsaObj.decrypt, ciphertext)

        # Check __eq__ and __ne__
        self.assertEqual(rsaObj.publickey() == rsaObj.publickey(),True) # assert_
        self.assertEqual(rsaObj.publickey() != rsaObj.publickey(),False) # failIf

    def _exercise_primitive(self, rsaObj):
        # Since we're using a randomly-generated key, we can't check the test
        # vector, but we can make sure encryption and decryption are inverse
        # operations.
        ciphertext = a2b_hex(self.ciphertext)

        # Test decryption
        plaintext = rsaObj.decrypt((ciphertext,))

        # Test encryption (2 arguments)
        (new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
        self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2))

        # Test blinded decryption
        blinding_factor = Random.new().read(len(ciphertext)-1)
        blinded_ctext = rsaObj.blind(ciphertext, blinding_factor)
        blinded_ptext = rsaObj.decrypt((blinded_ctext,))
        unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor)
        self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext))

        # Test signing (2 arguments)
        signature2 = rsaObj.sign(ciphertext, b(""))
        self.assertEqual((bytes_to_long(plaintext),), signature2)

        # Test verification
        self.assertEqual(1, rsaObj.verify(ciphertext, (bytes_to_long(plaintext),)))

    def _exercise_public_primitive(self, rsaObj):
        plaintext = a2b_hex(self.plaintext)

        # Test encryption (2 arguments)
        (new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))

        # Exercise verification
        rsaObj.verify(new_ciphertext2, (bytes_to_long(plaintext),))

    def _check_encryption(self, rsaObj):
        plaintext = a2b_hex(self.plaintext)
        ciphertext = a2b_hex(self.ciphertext)

        # Test encryption (2 arguments)
        (new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
        self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2))

    def _check_decryption(self, rsaObj):
        plaintext = a2b_hex(self.plaintext)
        ciphertext = a2b_hex(self.ciphertext)

        # Test plain decryption
        new_plaintext = rsaObj.decrypt((ciphertext,))
        self.assertEqual(b2a_hex(plaintext), b2a_hex(new_plaintext))

        # Test blinded decryption
        blinding_factor = Random.new().read(len(ciphertext)-1)
        blinded_ctext = rsaObj.blind(ciphertext, blinding_factor)
        blinded_ptext = rsaObj.decrypt((blinded_ctext,))
        unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor)
        self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext))

    def _check_verification(self, rsaObj):
        signature = bytes_to_long(a2b_hex(self.plaintext))
        message = a2b_hex(self.ciphertext)

        # Test verification
        t = (signature,)     # rsaObj.verify expects a tuple
        self.assertEqual(1, rsaObj.verify(message, t))

        # Test verification with overlong tuple (this is a
        # backward-compatibility hack to support some harmless misuse of the
        # API)
        t2 = (signature, '')
        self.assertEqual(1, rsaObj.verify(message, t2)) # extra garbage at end of tuple

    def _check_signing(self, rsaObj):
        signature = bytes_to_long(a2b_hex(self.plaintext))
        message = a2b_hex(self.ciphertext)

        # Test signing (2 argument)
        self.assertEqual((signature,), rsaObj.sign(message, b("")))

class RSAFastMathTest(RSATest):
    def setUp(self):
        RSATest.setUp(self)
        self.rsa = RSA.RSAImplementation(use_fast_math=True)

    def test_generate_1arg(self):
        """RSA (_fastmath implementation) generated key (1 argument)"""
        RSATest.test_generate_1arg(self)

    def test_generate_2arg(self):
        """RSA (_fastmath implementation) generated key (2 arguments)"""
        RSATest.test_generate_2arg(self)

    def test_construct_2tuple(self):
        """RSA (_fastmath implementation) constructed key (2-tuple)"""
        RSATest.test_construct_2tuple(self)

    def test_construct_3tuple(self):
        """RSA (_fastmath implementation) constructed key (3-tuple)"""
        RSATest.test_construct_3tuple(self)

    def test_construct_4tuple(self):
        """RSA (_fastmath implementation) constructed key (4-tuple)"""
        RSATest.test_construct_4tuple(self)

    def test_construct_5tuple(self):
        """RSA (_fastmath implementation) constructed key (5-tuple)"""
        RSATest.test_construct_5tuple(self)

    def test_construct_6tuple(self):
        """RSA (_fastmath implementation) constructed key (6-tuple)"""
        RSATest.test_construct_6tuple(self)

    def test_factoring(self):
        RSATest.test_factoring(self)

class RSASlowMathTest(RSATest):
    def setUp(self):
        RSATest.setUp(self)
        self.rsa = RSA.RSAImplementation(use_fast_math=False)

    def test_generate_1arg(self):
        """RSA (_slowmath implementation) generated key (1 argument)"""
        RSATest.test_generate_1arg(self)

    def test_generate_2arg(self):
        """RSA (_slowmath implementation) generated key (2 arguments)"""
        RSATest.test_generate_2arg(self)

    def test_construct_2tuple(self):
        """RSA (_slowmath implementation) constructed key (2-tuple)"""
        RSATest.test_construct_2tuple(self)

    def test_construct_3tuple(self):
        """RSA (_slowmath implementation) constructed key (3-tuple)"""
        RSATest.test_construct_3tuple(self)

    def test_construct_4tuple(self):
        """RSA (_slowmath implementation) constructed key (4-tuple)"""
        RSATest.test_construct_4tuple(self)

    def test_construct_5tuple(self):
        """RSA (_slowmath implementation) constructed key (5-tuple)"""
        RSATest.test_construct_5tuple(self)

    def test_construct_6tuple(self):
        """RSA (_slowmath implementation) constructed key (6-tuple)"""
        RSATest.test_construct_6tuple(self)

    def test_factoring(self):
        RSATest.test_factoring(self)

def get_tests(config={}):
    tests = []
    tests += list_test_cases(RSATest)
    try:
        from Crypto.PublicKey import _fastmath
        tests += list_test_cases(RSAFastMathTest)
    except ImportError:
        from distutils.sysconfig import get_config_var
        import inspect
        _fm_path = os.path.normpath(os.path.dirname(os.path.abspath(
            inspect.getfile(inspect.currentframe())))
            +"/../../PublicKey/_fastmath"+get_config_var("SO"))
        if os.path.exists(_fm_path):
            raise ImportError("While the _fastmath module exists, importing "+
                "it failed. This may point to the gmp or mpir shared library "+
                "not being in the path. _fastmath was found at "+_fm_path)
    if config.get('slow_tests',1):
        tests += list_test_cases(RSASlowMathTest)
    return tests

if __name__ == '__main__':
    suite = lambda: unittest.TestSuite(get_tests())
    unittest.main(defaultTest='suite')

# vim:set ts=4 sw=4 sts=4 expandtab:

Zerion Mini Shell 1.0